Improving Density Peak Clustering by Automatic Peak Selection and Single Linkage Clustering

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DenPEHC: Density peak based efficient hierarchical clustering

Existing hierarchical clustering algorithms involve a flat clustering component and an additional agglomerative or divisive procedure. This paper presents a density peak based hierarchical clustering method (DenPEHC), which directly generates clusters on each possible clustering layer, and introduces a grid granulation framework to enable DenPEHC to cluster large-scale and high-dimensional (LSH...

متن کامل

Automatic topography of high-dimensional data sets by non-parametric Density Peak clustering

Data analysis in high-dimensional spaces aims at obtaining a synthetic description of a data set, revealing its main structure and its salient features. We here introduce an approach for charting data spaces, providing a topography of the probability distribution from which the data are harvested. This topography includes information on the number and the height of the probability peaks, the de...

متن کامل

Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm

A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instan...

متن کامل

Clustering ; Single Linkage ; and Pairwise Distance Concentration

But what about high dimensions? What is the density of the points near the mean? And how far away is the average point from it’s component mean? Let us address this questions for a single isotropic Gaussian distribution. First, note that E[‖x‖] = nσ. Hence, on average, we expect a point to be rather far from mean, but let us quantify this. Recall, that the distribution of ‖x‖ is a χn distributi...

متن کامل

Improved Fruit Fly Optimization Algorithm-based Density Peak Clustering and Its Applications

Original scientific paper As density-based algorithm, Density Peak Clustering (DPC) algorithm has superiority of clustering by finding the density peaks. But the cut-off distance and clustering centres had to be set at random, which would influence clustering outcomes. Fruit flies find the best food by local searching and global searching. The food found was the parameter extreme value calculat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2020

ISSN: 2073-8994

DOI: 10.3390/sym12071168